
www.anl.gov

Using and Scaling Python

William Scullin
Assistant Computational Scientist
Leadership Computing Facility
Argonne National Laboratory

Oleksandr Pavlyk
Senior Numerical Software Engineer
Intel Corporation

ALCF Simulation, Data, and Learning Workshop
February 27, 2018

Argonne Leadership Computing Facility2

“People are doing high performance
computing with Python... how do we
stop them?”

- Senior Performance Engineer

Argonne Leadership Computing Facility3

Why This talk?

• Python is popular
• It’s becoming the de facto language for data science
• It’s behind a large number of scientific workflows
• It’s not uncommon for prototyping or even implementing

production scientific software
• We tend to see a lot of practices and mistages that strongly

impact the performance of user Python codes

Argonne Leadership Computing Facility4

Why Python?

• If you like a programming paradigm, it’s supported
• Most functions map to what you know already
• Easy to combine with other languages
• Easy to keep code readable and maintainable
• Lets you do just about anything without changing languages
• The price is right - no license management
• Code portability
• Fully Open Source
• Very low learning curve
• Commercial support options are available
• Comes with a highly enthusiastic and helpful community

Argonne Leadership Computing Facility5

Why Not Python?

• Performance is often a secondary concern for developers and distributions
• Most developers aren’t in HPC environments
• Most developers aren’t in science environments

• Many tools were designed to work best in generic environments
• Language maintainers favor consistency over compatibility
• Backwards compatibility is seldom guaranteed
• Low learning curve
• It’s easy to develop a code base that works, but won’t scale

Argonne Leadership Computing Facility6

Python 2 or 3?

6

Python was originally developed as a system scripting language for the Amoeba distributed operating system
and has been developing ever since, with many backwards-incompatible changes made in the name of progress
without too much delay on adoption. However, the changes from Python 2 to Python 3 were sufficiently radical
that adoption has been slow going. That said:

• Python 3 is the future – and the future is here
• All major libraries now work under Python 3.5+
• Almost all popular tools work with Python 3.5+
• Python 3’s loader and more of the interpreter’s internals are written in Python

• This makes loading more I/O intensive which presents challenges for scaling
• It also makes it easier to write alternative interpreters that can be faster than CPython

Argonne Leadership Computing Facility7

Python at ALCF

7

• Every system we run is a cross-compile environment except Cooley
• pip/distutils/setuptools/anaconda don’t play well with cross-compiling

• Blue Gene/Q Python is manually maintained
• Instructions on use are available in: /soft/cobalt/examples/python
• Modules built on request

• Theta offers Python either as:
• Intel Python - managed and used via Conda

• We prefer users to install their own environments
• Users will need to set up their environment to use the Cray MPICH compatibility ABI and

strictly build with the Intel MPI wrappers:
http://docs.cray.com/books/S-2544-704/S-2544-704.pdf

• ALCF Python managed via Spack and loadable via modules:
module load alcfpython/2.7.14-20180131

• A module that loads modules for NumPy, SciPy, MKL, h5py, mpi4py...
• We build and rebuild alcfpython via Spack to emphasize performance, reproducibility, and

Cray compatibility
• Use of virtualenv is recommended - do not mix conda and virtualenv!
• We’ll build any package with a Spack spec on request

Argonne Leadership Computing Facility8

Where do We want to spend our time?

8

Share of execution tim
e

Argonne Leadership Computing Facility9

How does CPython work?

Argonne Leadership Computing Facility10

How does CPython work?

Argonne Leadership Computing Facility11

How does CPython work?

Argonne Leadership Computing Facility12

Takeaways on CPython
• CPython is a Read–Eval–Print Loop (REPL) environment.
• There is no look-ahead to enable optimizations.
• There is no automatic parallelism.
• Everything is evaluated piece-wise and sequentially.
• CPython was written for safety and ease of maintenance, not performance:

o Russell Power and Alex Rubinsteyn wrote in their paper “How fast can we
make interpreted Python?”:

“In the general absence of type information, almost every instruction must be
treated as INVOKE_ARBITRARY_METHOD.”

• While you can improve pure Python performance through language features
running in CPython, it won’t deliver the efficiency of compiled code.

12

Argonne Leadership Computing Facility13

Threads and CPython: A Word on the GIL

To keep memory coherent, Python only allows a single thread to run in the interpreter's memory space at
once. This is enforced by the Global Interpreter Lock, or GIL.

The GIL isn’t all bad. It:
• Is mostly sidestepped for I/O (files and sockets)
• Makes writing modules in C much easier
• Makes maintaining the interpreter much easier
• Makes for any easy topic of conversation
• Encourages the development of other paradigms for parallelism
• Is almost entirely irrelevant in the HPC space as it neither impacts MPI or threading within compiled

modules

For the gory details, see David Beazley's talk on the
GIL: https://www.youtube.com/watch?v=fwzPF2JLoeU

Argonne Leadership Computing Facility14

Numpy and Scipy
NumPy should almost always be your first stop for performance
improvement. It provides:

• N-dimensional homogeneous arrays (ndarray)
• Universal functions (ufunc)
• built-in linear algebra, FFT, PRNGs
• Tools for integrating with C/C++/Fortran
• Heavy lifting done by optimized C/Fortran libraries such as Intel’s MKL

or IBM’s ESSL

SciPy extends NumPy with common scientific computing tools
• optimization
• additional linear algebra
• integration
• interpolation
• FFT
• signal and image processing
• ODE solvers

Problems arise when NumPy isn’t well built…

Argonne Leadership Computing Facility15

NumPy and SciPy
Optimized and built with MKL via Spack Installed via pip

The test on a KNL system:
>>> import timeit
>>> sum([timeit.timeit('import numpy as np; np.random.random((100,100))*np.random.random((100))') for i in range(100)])/100.0

119.68859601020813s 499.9269280433655s

Argonne Leadership Computing Facility16

NumPy and SciPy
Using NumPy appropriately pays off:
>>> import timeit
>>> import numpy as np
>>> A = np.linspace(-10,10,100).reshape(10,10)
>>> B = np.linspace(-1.0,1.0,100).reshape(10,10)
>>>
>>> def mat_mult(A,B):
... """ We're assuming regular 2D NumPy matrixes with dimensions such that
... A.shape[1] == B.shape[0]"""
... assert A.shape[1] == B.shape[0], "A[1].shape != B[0].shape"
... C=np.zeros((A.shape[0],B.shape[1]))
... for i in range(A.shape[0]):
... for j in range(A.shape[1]):
... for k in range(B.shape[1]):
... C[i,j] += A[i,k]*B[k,j]
... return C
...
...
>>> if __name__ == '__main__':
... setup_str = "from __main__ import A,B,mat_mult; import numpy as np"
... cnt = 100000
... manual_time = timeit.timeit("mat_mult(A,B)", number=cnt, setup=setup_str)
... numpy_time = timeit.timeit("np.matmul(A,B)", number=cnt, setup=setup_str)
... print("Manual Matmul x%d: %24.6fs" %(cnt, manual_time))
... print("NumPy Matmul x%d: %24.6fs" %(cnt, numpy_time))
...

Manual Matmul x100000: 409.429088s
NumPy Matmul x100000: 1.660264s

Argonne Leadership Computing Facility17

A Word From Our Sponsors: Canned Python
At this point in history, there are few reasons for the average user to manually cobble together a Python stack
for themselves on an x86_64 system. All options are relatively equivalent with unique tradeoffs.

We will be supporting two options on Theta:
• The Intel Python distribution
• Optimized builds of Python built with Spack via modules

You may also wish to consider a commercial distribution:
• Continuum Analytics Anaconda
• Enthought Canopy
• Cray’s Python

Both Intel Python and Continuum Analytics Anaconda build on the Conda package and environment
manager. Enthought Canopy relies on virtualenv for environment management.

Think of Conda as being like rpm or deb packages – easy to install binary packages, though managing
dependencies becomes potentially problematic.

Think of Spack+virtualenv as being like BSD or MacPorts – highly customizable, highly transparent, but
potentially a lot of time spent compiling.

Argonne Leadership Computing Facility18

Why MPI?
It is (still) the HPC paradigm for inter-process communications

• Supported by every HPC center and vendor on the planet
• APIs are stable, standardized, and portable across platforms and languages
• We’ll still be using it in 10 years…

It makes full use of HPC interconnects and hardware
• Abstracts aspects of the network that may be very system specific
• Dask, Spark, Hadoop, and Protocol Buffers use sockets or files!
• Vendors generally optimize MPI for their hardware and software

Well-supported tools for development – even for Python
• Debuggers now handle mixed language applications
• Profilers are treating Python as a first-class citizen
• Many parallel solver packages have well-developed Python interfaces

Folks have been writing Python MPI bindings since at least 1996
• David Beazley may have started this…
• Other contenders: Pypar (Ole Nielsen), pyMPI (Patrick Miller, et al), Pydusa (Timothy H. Kaiser), and Boost MPI

Python (Andreas Klöckner and Doug Gregor)
• The community has mostly settled on mpi4py by Lisandro Dalcin

Argonne Leadership Computing Facility19

A bottleneck at the start: Loading Python
When working in diskless environments or from shared file systems, keep track of
how much time is spent in startup and module file loading. Parallel file systems are
generally optimized for large, sequential reads and writes. NFS generally serializes
metadata transactions. This load time can have substantial impact on total
runtimes.

Argonne Leadership Computing Facility20

mpi4py

• Pythonic wrapping of the system’s native MPI
• provides almost all MPI-1,2 and common MPI-3 features
• very well maintained
• distributed with major Python distributions
• portable and scalable

• requires only: NumPy, Cython, and an MPI
• used to run a python application on 786,432 cores
• capabilities only limited by the system MPI

• http://mpi4py.readthedocs.io/en/stable/

Argonne Leadership Computing Facility21

How mpi4py works...
• mpi4py jobs are launched like other MPI binaries:
mpiexec –np ${RANKS} python ${PATH_TO_SCRIPT}

• an independent Python interpreter launches per rank
• no automatic shared memory, files, or state
• crashing an interpreter does crash the MPI program
• it is possible to embed an interpreter in a C/C++ program and launch an

interpreter that way
• if you crash or have trouble with simple codes

• CPython is a C binary and mpi4py is a binding
• you will likely get core files and mangled stack traces
• use ld or otool to check which MPI mpi4py is linked against
• ensure Python, mpi4py, and your code are available on all nodes and libraries

and paths are correct
• try running with a single rank
• rebuild with debugging symbols

Argonne Leadership Computing Facility22

mpi4py startup and shutdown
• Importing and MPI initialization

• importing mpi4py allows you to set runtime configuration options (e.g. automatic
initialization, thread_level) via mpi4py.rc()

• by default importing the MPI submodule calls MPI_Init()
• calling Init() or Init_thread() more than once violates the MPI

standard
• This will lead to a Python exception or an abort in C/C++
• use Is_initialized() to test for initialization

• MPI_Finalize() will automatically run at interpreter exit
• there is generally no need to ever call Finalize()
• use Is_finalized() to test for finalization if uncertain
• calling Finalize() more than once exits the interpreter with an error and may

crash C/C++/Fortran modules

Argonne Leadership Computing Facility23

mpi4py and program structure
Any code, even if after MPI.Init(), unless reserved to a given rank will run on all
ranks:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
mpisize = comm.Get_size()

if rank%2 == 0:
print(“Hello from an even rank: %d” %(rank))

comm.Barrier()

print(“Goodbye from rank %d” %(rank))

Argonne Leadership Computing Facility24

mpi4py and datatypes
• Python objects, unless they conform to a C data type, are pickled

• pickling and unpickling have significant compute overhead
• overhead impacts both senders and receivers
• pickling may also increase the memory size of an object
• use the lowercase methods, eg: recv(),send()

• Picklable Python objects include:
• None, True, and False
• integers, long integers, floating point numbers, complex numbers
• normal and Unicode strings
• tuples, lists, sets, and dictionaries containing only picklable objects
• functions defined at the top level of a module
• built-in functions and classes defined at the top level of a module
• instances of such classes whose __dict__() or the result of

calling __getstate__() is picklable

Argonne Leadership Computing Facility25

mpi4py and datatypes

• Buffers, MPI datatypes, and NumPy objects aren’t pickled
• transmitted near the speed of C/C++
• NumPy datatypes are autoconverted to MPI datatypes
• buffers may need to be described as a 2/3-list/tuple
[data, MPI.DOUBLE] for a single double
[data,count,MPI.INT] for an array of integers

• custom MPI datatypes are still possible
• use the capitalized methods, e.g.: Recv(), Send()

• When in doubt: can it be represented as a memory buffer or only as PyObject?

Argonne Leadership Computing Facility26

mpi4py: collectives and operations

• Collectives operating on Python objects are naive
• For the most part collective reduction operations on Python objects are serial
• Casing convention applies to methods:

• lowercase methods will work for general Python objects (albeit slowly)
• uppercase methods will work for NumPy/MPI data types at near C speed

Argonne Leadership Computing Facility27

mpi4py: Parallel I/O
• All 30-something MPI-2 methods are supported
• conventional Python I/O is not MPI safe!

• safe to read files, though there might be locking issues
• write a separate file per rank if you must use Python I/O

• h5py 2.2.0 and later support parallel I/O
• hdf5 must be built with parallel support

• make sure your hdf5 matches your MPI
• h5pcc must be present
• check things with: h5pcc -showconfig
• hdf5 and h5py from Anaconda are serial!

• anything which modifies the structure or metadata of a file must be done
collectively

• Generally as simple as:
f = h5py.File('parallel_test.hdf5', 'w',

driver='mpio', comm=MPI.COMM_WORLD)

Argonne Leadership Computing Facility28

Profiling Python application

Feature cProfile Line_profiler Intel® VTune™ Amplifier

Profiling technology Event Instrumentation Sampling, hardware events

Analysis granularity Function-level Line-level Line-level, call stack, time windows, hardware
events

Intrusiveness Medium (1.3-5x) High (4-10x) Low (1.05-1.3x)

Mixed language programs Python Python Python, Cython, C++, Fortran

• Right tool for high performance application profiling at all levels
• Function-level and line-level hotspot analysis, down to disassembly
• Call stack analysis
• Low overhead
• Mixed-language, multi-threaded application analysis
• Advanced hardware event analysis for native codes (Cython, C++, Fortran) for cache misses, branch misprediction, etc.

Argonne Leadership Computing Facility29

Using VTune from command line

amplxe-cl -collect hotspots \
-knob sampling-interval=1 \
-knob analyze-openmp=true \
-r dir_name_hs
-- python script.py

Analysis type

Analysis parameters, knobs

amplxe-cl -archive -r dir_name_hs Make trace folder relocatable

amplxe-gui ./dir_name_hs/ dir_name_hs.amplxe Analyse in GUI on laptop

Argonne Leadership Computing Facility30

VTune trace at a glance [summary tab]

Argonne Leadership Computing Facility31

Bottom-up view

Hot functions

Hot call stack

self-time, excluding callees

Helps analysis to filter-in on the OMP master thread

Argonne Leadership Computing Facility32

Top-down view

total time, including callees

Argonne Leadership Computing Facility33

Python mode vs. native mode

amplxe-cl … -mrte-mode=native -- python script.py

amplxe-cl …. -mrte-mode=native -run-pass-thru=--no-altstack – python script.py

treat python application as a binary

On Linux, if “stack size
too small” error seen.

VTune will no see python functions, only C functions behind them.

Useful if the default -mrte-mode=python is running into issues.

Argonne Leadership Computing Facility34

Cython: seen as generated C

Argonne Leadership Computing Facility35

Common problematic patterns

Low
Concurrency

Coarse Grain
Locks

Load
Imbalance

High Lock
Contention

Argonne Leadership Computing Facility36

Intel® Trace Collector & Analyzer

LD_PRELOAD=“/opt/intel/itac/2018.1.017/intel64/slib/libVT.so $CONDA_PREFIX/lib/libmpi.so” \
mpiexec -n 4 python script.py

… mpiexec -gtool “amplxe-cl -collect hpc-performance -r result:1-4” …

Use VTune to analyze node-level performance.
Can also use Intel® Advisor: advixe-cl

collect traces

Argonne Leadership Computing Facility37

Summary view

Argonne Leadership Computing Facility38

Time-line view in traceanalyzer

Argonne Leadership Computing Facility39

Enumerated admonishments
• Benchmark and profile as you develop
• Control your environment
• Ask if you can do an operation with NumPy or SciPy
• Watch your data types – use NumPy datatypes
• Never mix forking and threading – ie: Python multiprocessing
• Avoid threading in Python – use threads in compiled modules
• Check the build configurations of your important Python modules
• Beware of thread affinity:
aprun -n … -N … –e KMP_AFFINITY=none -d … -j …

• Watch startup times carefully
• Search before you write code – someone else has likely already implemented

the solution you seek
• On Cray systems, you’ll need the -b flag to aprun with any sort of

environment manager

Argonne Leadership Computing Facility40

Questions?

See also:

ECP Python Tutorial:
https://github.com/wscullin/ecp_python_tutorial

by William Scullin (ALCF), Matt Belhorn (OLCF), and Rollin Thomas (NERSC)

Intel Python Distribution:
http://software.intel.com/en-us/distribution-for-python

